x^2=23/16

Simple and best practice solution for x^2=23/16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=23/16 equation:



x^2=23/16
We move all terms to the left:
x^2-(23/16)=0
We add all the numbers together, and all the variables
x^2-(+23/16)=0
We get rid of parentheses
x^2-23/16=0
We multiply all the terms by the denominator
x^2*16-23=0
Wy multiply elements
16x^2-23=0
a = 16; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·16·(-23)
Δ = 1472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1472}=\sqrt{64*23}=\sqrt{64}*\sqrt{23}=8\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{23}}{2*16}=\frac{0-8\sqrt{23}}{32} =-\frac{8\sqrt{23}}{32} =-\frac{\sqrt{23}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{23}}{2*16}=\frac{0+8\sqrt{23}}{32} =\frac{8\sqrt{23}}{32} =\frac{\sqrt{23}}{4} $

See similar equations:

| 120=34t+2t^2 | | 2(x-2)+x=3x+1 | | -4x-6x+11-6=18 | | 7h=-2h+18 | | 3/4(20x-8)-3=54 | | 3(3y-6)=9 | | -2+n=16 | | 12-y=279 | | -x/5.6=-0.6 | | -9.88+17.9h=16.5h-17.02 | | 14y+12=13y=12 | | 104=22t+t^2 | | 3x+6=6x-2 | | 4x-7x+2=3x+2 | | -x/3.6=-0.3 | | -x/3.6=-0.4 | | 3(2y-6)=-30 | | 5t=-6 | | 85-y=210 | | 3(p-9)=18 | | -3z=-17z+14 | | 54x+5x=90 | | 3t=35 | | 5x+1=-x+2 | | 990x=9900 | | 2x+57=90 | | y+51=-99 | | 2/5x=940000 | | 13000+340x=990x | | x+45+4x=180 | | 15p-17=11+17p | | 0.08c=48 |

Equations solver categories